Hopf Algebras and Galois Module Theory May 29 - June 2, 2023

Braces of size np

Teresa Crespo, Daniel Gil-Muñoz, Anna Rio, Montserrat Vela

Thursday, June 1st

Braces

A *(left) brace* is a triple $(B, +, \cdot)$, where B is a set and + and \cdot are operations on B such that

- (B, +) is an abelian group,
- (B, \cdot) is a group,
- for all $a, b, c \in B$,

$$a(b+c) = ab - a + ac$$
, (brace relation).

We call (B, +) the *additive group* and (B, \cdot) the *multiplicative group* of the brace. The cardinal of B is called the *size* of the brace.

For any abelian group (A, +), (A, +, +) is a brace, called *trivial brace*. Any brace of prime size is trivial (Bachiller).

For B_1 and B_2 braces, a map $f : B_1 \to B_2$ is a *brace morphism* if f(b + b') = f(b) + f(b') and f(bb') = f(b)f(b') for all $b, b' \in B_1$. If f is bijective, we say that f is an *isomorphism*. In that case we say that the braces B_1 and B_2 are *isomorphic*.

Braces vs. holomorph

If (B, +) is an abelian group and G a regular subgroup of $\operatorname{Hol}(B) \simeq B \rtimes \operatorname{Aut} B$, then $\pi_{1|G}: G \to B$, $(a, f) \mapsto a$ is bijective.

For a left brace $(B, +, \cdot)$ and each $a \in B$, we have a bijective map $\lambda_a : B \to B, \quad b \mapsto -a + a \cdot b.$ We have $\lambda_a(b+c) = \lambda_a(b) + \lambda_a(c), \ a \cdot b = a + \lambda_a(b), \ \lambda_{a \cdot b} = \lambda_a \circ \lambda_b.$

Proposition. (Bachiller) Let $(B, +, \cdot)$ be a left brace. Then

 $\{(a,\lambda_a)\,:\,a\in B\}$

is a regular subgroup of $\operatorname{Hol}(B, +)$, isomorphic to (B, \cdot) . Conversely, if (B, +) is an abelian group and G is a regular subgroup of $\operatorname{Hol}(B, +)$, then B is a left brace with $(B, \cdot) \simeq G$, where

$$a \cdot b = a + f(b), \quad (\pi_{1|G})^{-1}(a) = (a, f) \in G.$$

These assignments give a bijective correspondence between isomorphism classes of left braces $(B, +, \cdot)$ and conjugacy classes of regular subgroups of Hol(B, +).

Semidirect product of braces

Let $(B_1, +, \cdot)$ and $(B_2, +, \cdot)$ be braces and $\tau : (B_2, \cdot) \to \operatorname{Aut}(B_1, +, \cdot)$ be a group morphism. Define in $B_1 \times B_2$

$$(a,b) + (a',b') = (a + a', b + b'), \quad (a,b) \cdot (a',b') = (a \cdot \tau(b)(a'), b \cdot b')$$

Then $(B_1 \times B_2, +, \cdot)$ is a brace which is called the *semidirect product* of the braces B_1 and B_2 via τ .

If τ is the trivial morphism, then $(B_1 \times B_2, +, \cdot)$ is called the *direct product* of B_1 and B_2 .

Proposition. Let p be a prime and n an integer such that p does not divide n and each group of order np has a unique normal subgroup of order p. Then every left brace of size np is a direct or semidirect product of the trivial brace of size p and a left brace of size n.

Proof.

Let B be a left brace of size np with additive group N and multiplicative group G. By the Schur-Zassenhaus theorem,

 $N = \mathbb{Z}_p \times E$ with E an abelian group of order n,

 $G = \mathbb{Z}_p \rtimes_{\tau} F$ with F a group of order n and $\tau : F \to \operatorname{Aut}(\mathbb{Z}_p)$ a group morphism.

 $\operatorname{Aut}(N) \simeq \operatorname{Aut}(\mathbb{Z}_p) \times \operatorname{Aut}(E) \Rightarrow \operatorname{Hol}(N) \simeq \operatorname{Hol}(\mathbb{Z}_p) \times \operatorname{Hol}(E).$

$$(m, k, a, g) \in \operatorname{Hol}(N), m \in \mathbb{Z}_p, k \in \mathbb{Z}_p^*, a \in E, g \in \operatorname{Aut}(E)$$

$$(m,k,a,g)(m^\prime,k^\prime,a^\prime,g^\prime)=(m+km^\prime,kk^\prime,a+g(a^\prime),gg^\prime).$$

 $\{(x, \lambda_x) : x \in N\}$ is a regular subgroup of $\operatorname{Hol}(N)$ isomorphic to G. For $x := (0, a) \in E$, $(x, \lambda_x) = (0, k_a, a, g_a)$, where $(k_a, g_a) = \lambda_x$. Now

$$\widetilde{F} := \{ (0, k_a, a, g_a) : a \in E \}$$

is a subgroup of G of order n, hence conjugate to F.

Now the unique subgroup of $\operatorname{Hol}(N)$ isomorphic to \mathbb{Z}_p and normalized by \widetilde{F} is

 $\langle (1, 1, 0_E, \mathrm{Id}) \rangle.$

More precisely

$$(0, k_a, a, g_a)(1, 1, 0_E, \mathrm{Id})(0, k_a, a, g_a)^{-1} = k_a(1, 1, 0_E, \mathrm{Id}).$$

We have obtained that

- $\overline{F} = \{(a, g_a) : a \in E\}$ is a regular subgroup of Hol(E), isomorphic to F,
- the map $\tau: \overline{F} \to \mathbb{Z}_p^*, (a, g_a) \mapsto k_a$ is a group morphism,
- $\langle (1, 1, 0_E, \mathrm{Id}) \rangle$ is a regular subgroup of $\mathrm{Hol}(\mathbb{Z}_p)$,
- the semidirect product $\mathbb{Z}_p \rtimes_{\tau} \overline{F}$ is isomorphic to G.

Hence B is the semidirect product of the trivial brace of size p and the brace of size n corresponding to the regular subgroup \overline{F} of Hol(E), via τ .

Proposition. Let p be a prime and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p. Let $N = \mathbb{Z}_p \times E$ be an abelian group of order np.

The conjugacy classes of regular subgroups of $\operatorname{Hol}(N)$ are in one-to-one correspondence with couples (F, τ) where F runs over a set of representatives of conjugacy classes of regular subgroups of $\operatorname{Hol}(E)$ and τ runs over representatives of classes of group morphisms $\tau: F \to \operatorname{Aut}(\mathbb{Z}_p)$ under the relation $\tau \simeq \tau'$ if and only if there exists $\nu \in \operatorname{Aut}(E)$ such that the corresponding inner automorphism Φ_{ν} of $\operatorname{Hol}(E)$ satisfies $\Phi_{\nu}(F) = F$ and $\tau = \tau' \circ \Phi_{\nu}|_F$.

Proof.

For a given couple (F, τ) the corresponding regular subgroup of Hol(N) isomorphic to $\mathbb{Z}_p \rtimes_{\tau} F$ is

$$G = \{ ((m, \tau(f)), f) \mid m \in \mathbb{Z}_p, f \in F \} \subseteq (\mathbb{Z}_p \rtimes \mathbb{Z}_p^*) \times \operatorname{Hol}(E) = \operatorname{Hol}(N).$$

Since we are dealing with regular subgroups, we just have to consider conjugation by elements $(i, \nu) \in \operatorname{Aut}(N) = \mathbb{Z}_p^* \times \operatorname{Aut}(E)$. Let $\Phi_{(i,\nu)}$ be the inner automorphism corresponding to (i,ν) inside Hol(N). Then,

$$\Phi_{(i,\nu)}(m,k,a,g) = (0,i,0_E,\nu)(m,k,a,g)(0,i,0_E,\nu)^{-1}$$

= $(im,ik,\nu(a),\nu g)(0,i^{-1},0_E,\nu^{-1})$
= $(im,k,\nu(a),\nu g\nu^{-1})$

If we work in Hol(E), conjugation by $\nu \in Aut(E)$ is

$$\Phi_{\nu}(a,g) = (0_E,\nu)(a,g)(0_E,\nu^{-1}) = (\nu(a),\nu g\nu^{-1}).$$

Let
$$G = \mathbb{Z}_p \rtimes_{\tau} F = \{ (m, \tau(a, g), a, g) \mid m \in \mathbb{Z}_p, (a, g) \in F \}$$
. Then,
 $\Phi_{(i,\nu)}(G) = \{ (im, \tau(a, g), \nu(a), \nu g \nu^{-1}) \mid m \in \mathbb{Z}_p, (a, g) \in F \}.$

Since $i \in \mathbb{Z}_p^*$, *im* runs over \mathbb{Z}_p as *m* does. Therefore, if (F', τ') is another pair, we have

$$\Phi_{(i,\nu)}(G) = \mathbb{Z}_p \rtimes_{\tau'} F' \iff F' = \Phi_{\nu}(F), \text{ and } \tau = \tau' \circ \Phi_{\nu}|_F.$$

Let us observe that in that case $\operatorname{Ker} \tau' = \Phi_{\nu}(\operatorname{Ker} \tau)$.

(H): p is an prime number and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p.

(H) is satisfied, in particular, if

• p > n,

- $n = 8, p \neq 2, 3, 7,$
- $n = 12, p \ge 7.$

Let b(s) denote the number of isomorphism classes of left braces of size s. Bardakov, Neschadim and Yadav stated the following conjectures.

For
$$p \ge 11$$
, $b(8p) = \begin{cases} 90 & \text{if } p \equiv 3,7 \pmod{8}, \\ 106 & \text{if } p \equiv 5 \pmod{8}, \\ 108 & \text{if } p \equiv 1 \pmod{8}. \end{cases}$

For
$$p \ge 7$$
, $b(12p) = \begin{cases} 24 & \text{if } p \equiv 11 \pmod{12}, \\ 28 & \text{if } p \equiv 5 \pmod{12}, \\ 34 & \text{if } p \equiv 7 \pmod{12}, \\ 40 & \text{if } p \equiv 1 \pmod{12}. \end{cases}$

Braces of size 12p

Corollary. Let $p \ge 7$ be a prime. Every left brace of size 12p is a direct or semidirect product of the trivial brace of size p and a left brace of size 12.

Left braces of size 12

$E \backslash F$	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}
C_{12}	1	1	0	2	1
$C_6 \times C_2$	1	1	1	1	1

E is the additive group and F the multiplicative group.

Proposition. For a prime number p, there are 10 left braces of size 12p which are direct product of the unique brace of size p and a brace of size 12.

Braces with additive group C_{12p} and multiplicative group $C_p \rtimes (C_6 \times C_2)$

For $E = C_{12} = \mathbb{Z}_{12}$, we have $\operatorname{Aut}(\mathbb{Z}_{12}) = \mathbb{Z}_{12}^* = \{1, 5, 7, 11\} \simeq C_2 \times C_2$ and $\operatorname{Hol}(\mathbb{Z}_{12}) = \{(x, \ell) : x \in \mathbb{Z}_{12}, \ell \in \mathbb{Z}_{12}^*\}.$

For $F = C_6 \times C_2$, we write $F = \langle x, y \rangle$, with x of order 6, y of order 2.

1) There are three morphisms from F to \mathbb{Z}_p^* with kernel of order 6, namely

2) If $p \equiv 1 \pmod{6}$, let ζ_6 be a generator of the unique subgroup of order 6 of \mathbb{Z}_p^* . We may define six morphisms from F to \mathbb{Z}_p^* with a kernel of order 2, namely

$$\begin{aligned} \tau_1 : x \mapsto \zeta_6 &| \tau_2 : x \mapsto \zeta_6^{-1} &| \tau_3 : x \mapsto \zeta_6^2 &| \tau_4 : x \mapsto \zeta_6^{-2} &| \tau_5 : x \mapsto \zeta_6 &| \tau_6 : x \mapsto \zeta_6^{-1} \\ & y \mapsto 1 & y \mapsto \zeta_6^3 & y \mapsto \zeta_6^3 &| y \mapsto \zeta_6^3 &| y \mapsto \zeta_6^3 &| y \mapsto \zeta_6^3 \end{aligned}$$

and two morphisms from F to \mathbb{Z}_p^* with a kernel of order 4, namely

$$\tau_1: x \mapsto \zeta_6^2 \qquad \qquad \tau_2: x \mapsto \zeta_6^{-2} \\ y \mapsto 1 \qquad \qquad y \mapsto 1.$$

We know that in $\operatorname{Hol}(C_{12})$ there is only one regular subgroup isomorphic to F. We may take

$$F = \langle x = (2,1), y = (3,7) \rangle \subset \operatorname{Hol}(E)$$

We determine the conjugation relations between the morphisms $\tau: F \to \mathbb{Z}_p^*$.

- 1) For the morphisms from F to \mathbb{Z}_p^* with kernel of order 6, we have $\tau_2 = \tau_3 \Phi_{11}$ and τ_1 is not conjugate to the other two, since Ker $\tau_1 = \langle x \rangle$, Ker $\tau_2 = \langle xy \rangle$, Ker $\tau_3 = \langle x^2y \rangle$, the second component of x is different from those of xy and x^2y . We obtain then two braces.
- 2) For the morphisms from F to \mathbb{Z}_p^* with a kernel of order 4, we have $\tau_1 = \tau_2 \Phi_{11}$ and we obtain then a unique brace.
- 3) For the morphisms from F to \mathbb{Z}_p^* with a kernel of order 2, we observe that $\tau_2 = \tau_1 \Phi_5$, $\tau_5 = \tau_1 \Phi_7$, $\tau_6 = \tau_1 \Phi_{11}$ and $\tau_4 = \tau_3 \Phi_{11}$. So we obtain only two braces (determined by τ_1 and τ_3). Note that τ_1 and τ_3 are not conjugate since Ker $\tau_1 = \langle y \rangle$, Ker $\tau_3 = \langle x^3 \rangle$.

Proposition. Let $p \ge 7$ be a prime number. We count the left braces with additive group C_{12p} and multiplicative group $\mathbb{Z}_p \rtimes (C_6 \times C_2)$.

- 1) If $p \equiv 5 \pmod{6}$ there are 3 such braces. One of them is a direct product and the other two have a kernel of order 6.
- 2) If $p \equiv 1 \pmod{6}$ there are 6 such braces. One of them is a direct product, two have kernel of order 6, two have kernels of order 2 and one has kernel of order 4.

Proceeding similarly for each pair (E, F), for E an abelian group of order 12, and F a group of order 12, we obtain the number of left braces with additive group $\mathbb{Z}_p \times E$ and multiplicative group $\mathbb{Z}_p \rtimes F$. We show the results in the following tables. In particular we have established the validity of the conjecture by Bardakov, Neschadim and Yadav.

If $p \equiv 11 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	2	3	0	7	2	14
$C_6 \times C_2$	2	2	1	3	2	10
	4	5	1	10	4	24

If $p \equiv 5 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	3	3	0	7	3	16
$C_6 \times C_2$	3	2	1	3	3	12
	6	5	1	10	6	28

If $p \equiv 7 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	4	6	0	7	2	19
$C_6 \times C_2$	4	4	2	3	2	15
	8	10	2	10	4	34

If $p \equiv 1 \pmod{12}$

	C_{12}	$C_6 \times C_2$	A_4	$D_{2\cdot 6}$	Dic_{12}	
C_{12}	6	6	0	7	3	22
$C_6 \times C_2$	6	4	2	3	3	18
	12	10	2	10	6	40

References

- D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016) 160-176.
- [2] V.G. Bardakov, M.V. Neshchadim, M.K. Yadav, Computing skew left braces of small orders, Internat. J. Algebra Comput. 30 (2020), no. 4, 839–851.
- [3] T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, Left braces of size 8p, J. Algebra 617, (2023), 317-339.
- [4] T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, *Inducing braces and Hopf Galois structures*, J. Pure Appl. Algebra 227 (2023), no. 9, Paper No. 107371.
- [5] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153-170.
- [6] A. Smoktunowicz, L. Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2 no. 1 (2018), 47–86.