Hopf Algebras and Galois Module Theory May 29 - June 2, 2023

Braces of size np

Teresa Crespo, Daniel Gil-Muñoz, Anna Rio, Montserrat Vela

Thursday, June 1st

Braces

A (left) brace is a triple $(B,+, \cdot)$, where B is a set and + and \cdot are operations on B such that

- $(B,+)$ is an abelian group,
- (B, \cdot) is a group,
- for all $a, b, c \in B$,

$$
a(b+c)=a b-a+a c, \quad \text { (brace relation) }
$$

We call $(B,+)$ the additive group and (B, \cdot) the multiplicative group of the brace. The cardinal of B is called the size of the brace.

For any abelian group $(A,+),(A,+,+)$ is a brace, called trivial brace. Any brace of prime size is trivial (Bachiller).

For B_{1} and B_{2} braces, a map $f: B_{1} \rightarrow B_{2}$ is a brace morphism if $f\left(b+b^{\prime}\right)=$ $f(b)+f\left(b^{\prime}\right)$ and $f\left(b b^{\prime}\right)=f(b) f\left(b^{\prime}\right)$ for all $b, b^{\prime} \in B_{1}$. If f is bijective, we say that f is an isomorphism. In that case we say that the braces B_{1} and B_{2} are isomorphic.

Braces vs. holomorph

If $(B,+)$ is an abelian group and G a regular subgroup of $\operatorname{Hol}(B) \simeq B \rtimes$ Aut B, then $\pi_{1 \mid G}: G \rightarrow B, \quad(a, f) \mapsto a$ is bijective.

For a left brace $(B,+, \cdot)$ and each $a \in B$, we have a bijective map

$$
\lambda_{a}: B \rightarrow B, \quad b \mapsto-a+a \cdot b .
$$

We have $\lambda_{a}(b+c)=\lambda_{a}(b)+\lambda_{a}(c), a \cdot b=a+\lambda_{a}(b), \lambda_{a \cdot b}=\lambda_{a} \circ \lambda_{b}$.
Proposition. (Bachiller) Let $(B,+, \cdot)$ be a left brace. Then

$$
\left\{\left(a, \lambda_{a}\right): a \in B\right\}
$$

is a regular subgroup of $\operatorname{Hol}(B,+)$, isomorphic to (B, \cdot).
Conversely, if $(B,+)$ is an abelian group and G is a regular subgroup of $\operatorname{Hol}(B,+)$, then B is a left brace with $(B, \cdot) \simeq G$, where

$$
a \cdot b=a+f(b), \quad\left(\pi_{1 \mid G}\right)^{-1}(a)=(a, f) \in G .
$$

These assignments give a bijective correspondence between isomorphism classes of left braces $(B,+, \cdot)$ and conjugacy classes of regular subgroups of $\operatorname{Hol}(B,+)$.

Semidirect product of braces

Let $\left(B_{1},+, \cdot\right)$ and $\left(B_{2},+, \cdot\right)$ be braces and $\tau:\left(B_{2}, \cdot\right) \rightarrow \operatorname{Aut}\left(B_{1},+, \cdot\right)$ be a group morphism. Define in $B_{1} \times B_{2}$

$$
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right), \quad(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot \tau(b)\left(a^{\prime}\right), b \cdot b^{\prime}\right)
$$

Then $\left(B_{1} \times B_{2},+, \cdot\right)$ is a brace which is called the semidirect product of the braces B_{1} and B_{2} via τ.

If τ is the trivial morphism, then $\left(B_{1} \times B_{2},+, \cdot\right)$ is called the direct product of B_{1} and B_{2}.

Proposition. Let p be a prime and n an integer such that p does not divide n and each group of order np has a unique normal subgroup of order p. Then every left brace of size np is a direct or semidirect product of the trivial brace of size p and a left brace of size n.

Proof.

Let B be a left brace of size $n p$ with additive group N and multiplicative group G. By the Schur-Zassenhaus theorem,
$N=\mathbb{Z}_{p} \times E$ with E an abelian group of order n,
$G=\mathbb{Z}_{p} \rtimes_{\tau} F$ with F a group of order n and $\tau: F \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ a group morphism.

$$
\begin{aligned}
& \operatorname{Aut}(N) \simeq \operatorname{Aut}\left(\mathbb{Z}_{p}\right) \times \operatorname{Aut}(E) \Rightarrow \operatorname{Hol}(N) \simeq \operatorname{Hol}\left(\mathbb{Z}_{p}\right) \times \operatorname{Hol}(E) . \\
&(m, k, a, g) \in \operatorname{Hol}(N), m \in \mathbb{Z}_{p}, k \in \mathbb{Z}_{p}^{*}, a \in E, g \in \operatorname{Aut}(E) \\
&(m, k, a, g)\left(m^{\prime}, k^{\prime}, a^{\prime}, g^{\prime}\right)=\left(m+k m^{\prime}, k k^{\prime}, a+g\left(a^{\prime}\right), g g^{\prime}\right) .
\end{aligned}
$$

$\left\{\left(x, \lambda_{x}\right): x \in N\right\}$ is a regular subgroup of $\operatorname{Hol}(N)$ isomorphic to G. For $x:=$ $(0, a) \in E,\left(x, \lambda_{x}\right)=\left(0, k_{a}, a, g_{a}\right)$, where $\left(k_{a}, g_{a}\right)=\lambda_{x}$. Now

$$
\widetilde{F}:=\left\{\left(0, k_{a}, a, g_{a}\right): a \in E\right\}
$$

is a subgroup of G of order n, hence conjugate to F.

Now the unique subgroup of $\operatorname{Hol}(N)$ isomorphic to \mathbb{Z}_{p} and normalized by \widetilde{F} is

$$
\left\langle\left(1,1,0_{E}, \mathrm{Id}\right)\right\rangle .
$$

More precisely

$$
\left(0, k_{a}, a, g_{a}\right)\left(1,1,0_{E}, \mathrm{Id}\right)\left(0, k_{a}, a, g_{a}\right)^{-1}=k_{a}\left(1,1,0_{E}, \mathrm{Id}\right)
$$

We have obtained that

- $\bar{F}=\left\{\left(a, g_{a}\right): a \in E\right\}$ is a regular subgroup of $\operatorname{Hol}(E)$, isomorphic to F,
- the map $\tau: \bar{F} \rightarrow \mathbb{Z}_{p}^{*},\left(a, g_{a}\right) \mapsto k_{a}$ is a group morphism,
- $\left\langle\left(1,1,0_{E}\right.\right.$, Id $\left.)\right\rangle$ is a regular subgroup of $\operatorname{Hol}\left(\mathbb{Z}_{p}\right)$,
- the semidirect product $\mathbb{Z}_{p} \rtimes_{\tau} \bar{F}$ is isomorphic to G.

Hence B is the semidirect product of the trivial brace of size p and the brace of size n corresponding to the regular subgroup \bar{F} of $\operatorname{Hol}(E)$, via τ.

Proposition. Let p be a prime and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p. Let $N=\mathbb{Z}_{p} \times E$ be an abelian group of order np.
The conjugacy classes of regular subgroups of $\operatorname{Hol}(N)$ are in one-to-one correspondence with couples (F, τ) where F runs over a set of representatives of conjugacy classes of regular subgroups of $\operatorname{Hol}(E)$ and τ runs over representatives of classes of group morphisms $\tau: F \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ under the relation $\tau \simeq \tau^{\prime}$ if and only if there exists $\nu \in \operatorname{Aut}(E)$ such that the corresponding inner automorphism Φ_{ν} of $\operatorname{Hol}(E)$ satisfies $\Phi_{\nu}(F)=F$ and $\tau=\left.\tau^{\prime} \circ \Phi_{\nu}\right|_{F}$.

Proof.
For a given couple (F, τ) the corresponding regular subgroup of $\operatorname{Hol}(N)$ isomorphic to $\mathbb{Z}_{p} \rtimes_{\tau} F$ is

$$
G=\left\{((m, \tau(f)), f) \mid m \in \mathbb{Z}_{p}, f \in F\right\} \subseteq\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p}^{*}\right) \times \operatorname{Hol}(E)=\operatorname{Hol}(N)
$$

Since we are dealing with regular subgroups, we just have to consider conjugation by elements $(i, \nu) \in \operatorname{Aut}(N)=\mathbb{Z}_{p}^{*} \times \operatorname{Aut}(E)$.

Let $\Phi_{(i, \nu)}$ be the inner automorphism corresponding to (i, ν) inside $\operatorname{Hol}(N)$. Then,

$$
\begin{aligned}
\Phi_{(i, \nu)}(m, k, a, g) & =\left(0, i, 0_{E}, \nu\right)(m, k, a, g)\left(0, i, 0_{E}, \nu\right)^{-1} \\
& =(i m, i k, \nu(a), \nu g)\left(0, i^{-1}, 0_{E}, \nu^{-1}\right) \\
& =\left(i m, k, \nu(a), \nu g \nu^{-1}\right)
\end{aligned}
$$

If we work in $\operatorname{Hol}(E)$, conjugation by $\nu \in \operatorname{Aut}(E)$ is

$$
\Phi_{\nu}(a, g)=\left(0_{E}, \nu\right)(a, g)\left(0_{E}, \nu^{-1}\right)=\left(\nu(a), \nu g \nu^{-1}\right) .
$$

Let $G=\mathbb{Z}_{p} \rtimes_{\tau} F=\left\{(m, \tau(a, g), a, g) \mid m \in \mathbb{Z}_{p},(a, g) \in F\right\}$. Then,

$$
\Phi_{(i, \nu)}(G)=\left\{\left(i m, \tau(a, g), \nu(a), \nu g \nu^{-1}\right) \mid m \in \mathbb{Z}_{p},(a, g) \in F\right\}
$$

Since $i \in \mathbb{Z}_{p}^{*}, i m$ runs over \mathbb{Z}_{p} as m does. Therefore, if $\left(F^{\prime}, \tau^{\prime}\right)$ is another pair, we have

$$
\Phi_{(i, \nu)}(G)=\mathbb{Z}_{p} \rtimes_{\tau^{\prime}} F^{\prime} \Longleftrightarrow F^{\prime}=\Phi_{\nu}(F), \text { and } \tau=\left.\tau^{\prime} \circ \Phi_{\nu}\right|_{F} .
$$

Let us observe that in that case $\operatorname{Ker} \tau^{\prime}=\Phi_{\nu}(\operatorname{Ker} \tau)$.
(H): p is an prime number and n an integer such that p does not divide n and each group of order np has a normal subgroup of order p.
(H) is satisfied, in particular, if

- $p>n$,
- $n=8, p \neq 2,3,7$,
- $n=12, p \geq 7$.

Let $b(s)$ denote the number of isomorphism classes of left braces of size s. Bardakov, Neschadim and Yadav stated the following conjectures.

$$
\begin{aligned}
& \text { For } p \geq 11, b(8 p)=\left\{\begin{array}{lll}
90 & \text { if } p \equiv 3,7 & (\bmod 8), \\
106 & \text { if } p \equiv 5 & (\bmod 8), \\
108 & \text { if } p \equiv 1 & (\bmod 8) .
\end{array}\right. \\
& \text { For } p \geq 7, b(12 p)=\left\{\begin{array}{lll}
24 & \text { if } p \equiv 11 & (\bmod 12), \\
28 & \text { if } p \equiv 5 & (\bmod 12), \\
34 & \text { if } p \equiv 7 & (\bmod 12), \\
40 & \text { if } p \equiv 1 & (\bmod 12) .
\end{array}\right.
\end{aligned}
$$

Braces of size $12 p$

Corollary. Let $p \geq 7$ be a prime. Every left brace of size $12 p$ is a direct or semidirect product of the trivial brace of size p and a left brace of size 12 .

Left braces of size 12

$E \backslash F$	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic $_{12}$
C_{12}	1	1	0	2	1
$C_{6} \times C_{2}$	1	1	1	1	1

E is the additive group and F the multiplicative group.

Proposition. For a prime number p, there are 10 left braces of size $12 p$ which are direct product of the unique brace of size p and a brace of size 12 .

Braces with additive group $C_{12 p}$ and multiplicative group $C_{p} \rtimes\left(C_{6} \times C_{2}\right)$

For $E=C_{12}=\mathbb{Z}_{12}$, we have $\operatorname{Aut}\left(\mathbb{Z}_{12}\right)=\mathbb{Z}_{12}^{*}=\{1,5,7,11\} \simeq C_{2} \times C_{2}$ and $\operatorname{Hol}\left(\mathbb{Z}_{12}\right)=\left\{(x, \ell): x \in \mathbb{Z}_{12}, \ell \in \mathbb{Z}_{12}^{*}\right\}$.

For $F=C_{6} \times C_{2}$, we write $F=\langle x, y\rangle$, with x of order $6, y$ of order 2 .

1) There are three morphisms from F to \mathbb{Z}_{p}^{*} with kernel of order 6 , namely

$$
\begin{array}{rlrrrr}
\tau_{1}: x & \mapsto 1 \\
y & \mapsto-1, & \tau_{2}: x & \mapsto-1 \\
y & & \tau_{3}: x & x & \mapsto-1 \\
& y & \mapsto
\end{array} .
$$

2) If $p \equiv 1(\bmod 6)$, let ζ_{6} be a generator of the unique subgroup of order 6 of \mathbb{Z}_{p}^{*}. We may define six morphisms from F to \mathbb{Z}_{p}^{*} with a kernel of order 2 , namely
and two morphisms from F to \mathbb{Z}_{p}^{*} with a kernel of order 4, namely

$$
\begin{array}{rlrl}
\tau_{1}: x & \mapsto \zeta_{6}^{2} & \tau_{2}: x & \mapsto \zeta_{6}^{-2} \\
y & \mapsto 1 & y & \mapsto 1 .
\end{array}
$$

We know that in $\operatorname{Hol}\left(C_{12}\right)$ there is only one regular subgroup isomorphic to F. We may take

$$
F=\langle x=(2,1), y=(3,7)\rangle \subset \operatorname{Hol}(E)
$$

We determine the conjugation relations between the morphisms $\tau: F \rightarrow \mathbb{Z}_{p}^{*}$.

1) For the morphisms from F to \mathbb{Z}_{p}^{*} with kernel of order 6 , we have $\tau_{2}=\tau_{3} \Phi_{11}$ and τ_{1} is not conjugate to the other two, since $\operatorname{Ker} \tau_{1}=\langle x\rangle$, $\operatorname{Ker} \tau_{2}=\langle x y\rangle$, $\operatorname{Ker} \tau_{3}=\left\langle x^{2} y\right\rangle$, the second component of x is different from those of $x y$ and $x^{2} y$. We obtain then two braces.
2) For the morphisms from F to \mathbb{Z}_{p}^{*} with a kernel of order 4 , we have $\tau_{1}=\tau_{2} \Phi_{11}$ and we obtain then a unique brace.
3) For the morphisms from F to \mathbb{Z}_{p}^{*} with a kernel of order 2 , we observe that $\tau_{2}=$ $\tau_{1} \Phi_{5}, \tau_{5}=\tau_{1} \Phi_{7}, \tau_{6}=\tau_{1} \Phi_{11}$ and $\tau_{4}=\tau_{3} \Phi_{11}$. So we obtain only two braces (determined by τ_{1} and τ_{3}). Note that τ_{1} and τ_{3} are not conjugate since $\operatorname{Ker} \tau_{1}=$ $\langle y\rangle, \operatorname{Ker} \tau_{3}=\left\langle x^{3}\right\rangle$.

Proposition. Let $p \geq 7$ be a prime number. We count the left braces with additive group $C_{12 p}$ and multiplicative group $\mathbb{Z}_{p} \rtimes\left(C_{6} \times C_{2}\right)$.

1) If $p \equiv 5(\bmod 6)$ there are 3 such braces. One of them is a direct product and the other two have a kernel of order 6 .
2) If $p \equiv 1(\bmod 6)$ there are 6 such braces. One of them is a direct product, two have kernel of order 6 , two have kernels of order 2 and one has kernel of order 4 .

Proceeding similarly for each pair (E, F), for E an abelian group of order 12 , and F a group of order 12, we obtain the number of left braces with additive group $\mathbb{Z}_{p} \times E$ and multiplicative group $\mathbb{Z}_{p} \rtimes F$. We show the results in the following tables. In particular we have established the validity of the conjecture by Bardakov, Neschadim and Yadav.

If $p \equiv 11(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic $_{12}$	
C_{12}	2	3	0	7	2	14
$C_{6} \times C_{2}$	2	2	1	3	2	10
	4	5	1	10	4	$\mathbf{2 4}$

If $p \equiv 5(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}	
C_{12}	3	3	0	7	3	16
$C_{6} \times C_{2}$	3	2	1	3	3	12
	6	5	1	10	6	$\mathbf{2 8}$

If $p \equiv 7(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic_{12}	
C_{12}	4	6	0	7	2	19
$C_{6} \times C_{2}$	4	4	2	3	2	15
	8	10	2	10	4	$\mathbf{3 4}$

If $p \equiv 1(\bmod 12)$

	C_{12}	$C_{6} \times C_{2}$	A_{4}	$D_{2 \cdot 6}$	Dic $_{12}$	
C_{12}	6	6	0	7	3	22
$C_{6} \times C_{2}$	6	4	2	3	3	18
	12	10	2	10	6	$\mathbf{4 0}$

References

[1] D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016) 160-176.
[2] V.G. Bardakov, M.V. Neshchadim, M.K. Yadav, Computing skew left braces of small orders, Internat. J. Algebra Comput. 30 (2020), no. 4, 839-851.
[3] T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, Left braces of size $8 p$, J. Algebra 617, (2023), 317-339.
[4] T. Crespo, D. Gil-Muñoz, A. Rio, M. Vela, Inducing braces and Hopf Galois structures, J. Pure Appl. Algebra 227 (2023), no. 9, Paper No. 107371.
[5] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007), 153-170.
[6] A. Smoktunowicz, L. Vendramin, On skew braces (with an appendix by N. Byott and L. Vendramin), J. Comb. Algebra 2 no. 1 (2018), 47-86.

